DRIVERS OF X-INEFFICIENCY IN CO-OPERATIVE AND COMMUNITY BANKS IN TANZANIA.

Pastory, D.¹ and Mataba, L.²
¹Department of Accounting, College of Business Education, Tanzania
²Department of Banking and Micro Finance, Moshi Cooperative University, Tanzania.
d.pastory@cbe.ac.tz

ABSTRACT

Over a span of years efficiency in Tanzanian Community Banks (CBs) has been found to be low. However, the specific and macroeconomic drivers of inefficiency have not been uncovered. The study applied explanatory sequential research design by examining relationship between variables through analyzing quantitative panel data. Panel data was used and utilized nine (9) community banks except three banks which emerged recently. Using tobit regression and triangulation approach the study analyzed the drivers of inefficiency and found that gross loans to total deposit (Gltd), bank size (logassts), return on average assets (RoaA) and capital adequacy ratio (Car1) were statistically significant and negatively related to most bank inefficiency measures; while Net interest margin (Nim) was statistically positively related to inefficiency. The effect of macroeconomic factors on inefficiencies was not uniform; with GDP having an unexpected positive effect on inefficiency. The corresponding relationship is seemingly explained by the decreasing contribution of agriculture to GDP in Tanzania. Policy-wise, these findings imply that bank regulators should encourage community banks to increase their asset base in order to reduce inefficiencies. Moreover, community banks’ management need to reconcile between Gltd ratio and liquidity as higher Gltd ratio may compromise optimal liquidity in banks. On the effect of Nim, management should revisit their pricing policies in order not only to reduce inefficiencies but also to attract deposits from clients. On the effect of GDP on inefficiency, community banks need to diversify in other sectors of the economy so as reduce dependency on agricultural lending.

Keywords: Drivers of inefficiency, Cooperative banks, Community banks, X-inefficiency

INTRODUCTION

The demand for efficient and regulated microfinance services in low income communities over the last six decades has been significantly high (Ledgerwood 2013; Robinson, 2001).¹ To respond to

¹According to the World Bank (2014), about 2.5 billion working-age adults, which were more than half of the total adult world population in 2011, had no access to financial services delivered by regulated financial institutions. Although the number improved
the increasing demand, microfinance–based financial service providers have emerged nearly all over the world. They include Credit–based Microfinance Institutions (CMFIs), Savings and Credit Cooperative Societies (SACCOS), and Community Banks (CBs) (Kaleshu, 2013; Kessy, 2010). As opposed to other microfinance services providers, CBs worldwide have proven their abilities to provide regulated microfinance services to the poor while demonstrating considerable level of resilience to working with low income communities (MacMahan, 2015; Olewapo and Ario, 2011; Hays, Stephen, and Arthur, 2009; Lalika, 2006).

In Tanzania, CBs became operational as a result of financial (banking) reforms–termed first generation banking reforms, initiated in 1991. CBs have been serving low income communities with regulated microfinance services both in the rural and urban areas (BOT, 2014; Lalika, 2006). CBs, as opposed to Traditional Commercial Banks (TCBs) whose main customers are corporate and middle class clients, CBs focus on local financial markets consisting mainly of poor and risky “unbankable” clients who are essentially the focus of the National Financial Inclusion Framework (NFIF). On the other hand, CBs receive deposits from the public, thus subjecting them to banking regulations, a distinctive banking characteristic which sets apart CBs from typical Microfinance Institutions (MFIs) and other non-banking financial institutions (Freixas and Rochet, 2008).

With the Tanzanian population reaching about 51 million out of which 64% live in poverty (as per Multidimensional Poverty Index) (UNDP, 2015), existence and operationalization of CBs in Tanzania provide a versatile opportunity for the poor households especially in the rural areas to access regulated financial services. In this paper, regulated financial services are defined as financial services the provision of which is supervised by the Central Bank; in this case, the Bank of Tanzania (BOT), and they include savings and credit services to the public. Two major types or categories of community banks, based on ownership structure, have evolved in the Tanzanian banking system, namely, Co-operative Community Banks (CCBs) and Non-Co-operative Community Banks (NCCBs) (BOT, 2014). Moreover, microfinance services offered by CBs in Tanzania have also been in the increase. For instance, customer deposits collected by community banks increased from TZS 13.5 billion in 2006 to TZS 67.6 billion in 2016, which is an average increase of 40.1% per annum. Loan and advances to customers increased from TZS 10.3 billion in 2006 to TZS 61.4 billion in 2016, an average increase of 49.6% per annum (BOT, 2016).

Although CBs efforts are well felt in the Tanzanian banking market, only a few studies have addressed CBs’ performance. A study carried out by Mataba and Aikaeli (2016) in the community banking industry in Tanzania for the period 2002 to 2014 established that CBs were generally
operating inefficiently with regard to various measures of efficiency. Cost Inefficiency (CIE) averaged at 64%, while Technical Inefficiency (TIE), which essentially constitutes X-inefficiency in banks, averaged at 37% during the study period. Furthermore, allocative inefficiency, which results from banks’ failure to use input mix in an optimal combination at a given input prices, averaged at 48%. In order to effectively serve the low-income people and contribute to the overall objective of the financial sector reforms, CBs ought to conduct banking business efficiently. Inefficiency in CBs implies poor financial performance, and hence lower contribution to economic growth leading to decreased capacity to address poverty in low income communities (Owusu-Frimpong, 2008; Berger, Hasan, and Klapper 2004).

In Tanzania, bank inefficiency studies appear to have been contextually-bound, concentrating mainly on TCBs whose main focus is corporate customers. Bank efficiency studies in CBs has received scanty research spotlight (see, for instance, Gwahula, 2013; Pastory Xuezhi Qin, Ndiege, 2013; Aikaieli, 2008; Aikaieli, 2006). Given the contextual and operational divergences existing between CBs and TCBs, the empirical findings on inefficiency determinants in TCBs might not be generalized for CBs. Furthermore, studies indicate that the drivers of inefficiency also seem to be environment specific.

While the study by Mataba and Aikaieli (2016) revealed considerable levels of inefficiencies in the CBs as indicated in the foregoing discussions, the corresponding drivers of inefficiencies were not uncovered. Thus, this study sets to identify and analyze bank specific and macroeconomic drivers of inefficiency in CBs in Tanzania. Identifying and analyzing the drivers of inefficiency in community banks is important in order to inform bank managers and regulators the causes of inefficiencies and on how to deal with inefficiencies. Moreover, being a young banking subsector in Tanzania, studies on drivers of inefficiencies in community bank provide relevant information for bank regulators and policy makers to effectively nurture this important sub-sector. In this context, drivers of inefficiency are those factors or variables that lead to wastage of bank resources. The study was guided by the following null hypothesis: bank specific and macroeconomic factors do not impact inefficiencies in community banks. Its corresponding alternative hypothesis was: bank specific and macroeconomic factors do impact inefficiencies in community banks.

The rest of this paper is organized as follows: section two presents literature review, followed by methodology in section three. Section four presents and discusses the results while section five deals with conclusions and policy implications of the findings.

EFFICIENCY AND X-INEFFICIENCY CONCEPTS: A THEORETICAL FRAMEWORK

According to Heyne (2000), efficiency is a relationship between ends and means. The situation is inefficient, if one could achieve the desired ends with less means, or that the means employed could produce more of the ends desired value. Thus, economic efficiency is measured not by the
relationship between the physical quantities of ends and means, but by the relationship between the value of the ends and the value of the means. Berger and Mester (1997) consider two types of inefficiency, namely, cost and profit inefficiencies as the most important inefficiency concepts. While profit inefficiency gives a measure of how far a bank is to producing the maximum possible profit given a particular level of input prices and output prices (and other variables), cost inefficiency measures how far a bank’s cost is to what a best practice bank’s cost would be for producing the same output bundle under the same conditions. The cost frontier model can be written in the general form (Coelli, Rao, O'Donnell, and Battese, 2005) as follows:

\[C_i \geq c(w_{i1}, w_{i2}, \ldots, w_{Ni}, q_{i1}, q_{i2}, \ldots, q_{Mi}) \] \hspace{1cm} (1)

Where \(C_i \) is the observed cost of the bank; \(w_{ni} \) is the \(n \)-th input price; \(q_{mi} \) is the \(m \)-th output; and \(c(.) \) is a cost function of the best practice bank that is non-decreasing, linearly homogenous and concave in prices. It should be noted that the cost function gives the minimum cost of producing outputs \(q_{1i}, q_{2i}, \ldots, q_{Mi} \) when the bank faces input prices \(w_{1i}, w_{2i}, w_{Ni} \). Equation 1 is saying that observed cost is greater than or equal to the cost of the best practice bank (i.e. minimum cost). When price data are available and if we assume that firms minimize cost, it is possible to estimate the economic characteristics of the bank production technology, and thus estimate cost efficiency using a cost frontier. Thus, Cost Efficiency (CE) of the \(i \)-th bank is calculated as:

\[CE = \frac{w_i'x_i}{w_i'x_i^*} \] \hspace{1cm} (2)

That is, CE is the ratio of minimum cost to observed cost, for the \(i \)-th firm. What equation 2 is saying is that cost efficiency is the ratio or proportion of cost or resources that are used efficiently given the output produced. For instance, a bank with cost efficiency of 0.75 is 75% cost efficient. This implies that the bank equivalently wastes 25% of its costs relative to a best-practice bank facing the same conditions, that is, it is 25% inefficient. Cost inefficiency may arise from two different sources. One is technical inefficiency and the other is suboptimal allocation of resources (allocative inefficiency). Bad management, poor motivation, and weak work pressure consistent with technical inefficiency are blamed to be the sources of inefficiency as they result in the underutilization of input resources or factors of production. In the terminology of Leibenstein (1966), this efficiency gap is termed “X-inefficiency”. Like other efficiencies, cost efficiency ranges between zero and one (0,1) and equals one for a best-practice bank within the observed data. It should be stressed that in practice, efficiency is generally defined relative to the best
practice bank observed in the industry rather than to any true minimum costs, since the underlying technology is unknown (Berger and Mester, 1997).

Empirical background

Massive bank efficiency studies have been carried out in Traditional Commercial Banks (TCBs) in developed countries, however, only a handful have been done in developing countries (Ohene-Asare, 2011; Berger, 2007). Even those studies conducted in developing countries; there is no evidence that such studies took into account the specific factors that underlie inefficiency in the community banking industry.

Pasiouras, Sifodaskalakis, and Zopounidis (2007) examined cost, technical and allocative efficiency in Greek cooperative banks using DEA and established that bank size had an impact on all measures of efficiency, but the impact of capitalization depended on the efficiency measure. They also found that the source of inefficiency was allocative rather than technical. Although the study provided some insights on the determinants of efficiency in the cooperative sector, the study was not inclusive enough to involve other non-cooperative community banks as it is in the current study.

Fewer banking studies on determinants of efficiency have been conducted in African banking systems. Hauner and Peiris (2008) studying 14 Ugandan commercial banks analyzed the effect of financial sector reforms on competition and efficiency for the period 1999-04. Using DEA to measure efficiency and Panzar and Rosse’s (1987) model for competition, they ascertained that the level of competition had increased significantly and it had been associated with a rise in efficiency. Further findings indicated that, on average, larger banks and foreign-owned banks had become more efficient, while smaller banks were less efficient in the face of increased competitive pressures.

Magali and Dickson (2013) employed DEA approach to assess the technical efficiency of rural SACCOS in various regions Tanzania. The study established that technical efficiency varied across regions and ranged between 46 to 62 percent. They also noted that higher costs of operations for rural SACCOS attributed to low efficiency. However, the determinants of inefficiency in CBs were not touched.

Aikaeli (2008) while studying the Tanzanian banking sector for the period 1998-04, employed DEA in estimation of technical and scale efficiency, while x-inefficiency was estimated using a multi-product translog cost function. Aikaeli (2008) established that commercial banks operated on the decreasing part of their average cost curves which gave them room to expand with increasing returns to scale. He further established that the major drivers of x-inefficiency in banks were inadequate fixed capital, poor labour compensation, less management capacity as banks expanded, and the
overwhelming accumulation of excess liquidity. Similarly, Cull and Spreng (2008) when examining the effect of bank privatization on efficiency in Tanzania reported that there were tensions between pursuing profitability and extending the outreach of a bank after privatization. In other words, access to banking services, especially among the relatively poor, might be sacrificed for the sake of improved efficiency.

While studying the relationship between efficiency and Non-Performing Loans (NPLs) in the community banking sector for the period 2003-2014, Mataba (2016) found a negative relationship between CBs efficiency and GDP in Tanzania. These results contradict the general theory in Traditional Commercial Banks (TCBs) that higher real GDP growth usually translates into more income which improves the debt servicing capacity of borrowers, hence lower NPLs (Makir et al., 2014; Klein, 2013). With a highly expanding economy, Tanzania banking system including CBs has witnessed excessive bank lending to finance a “hot” economy. On the other hand, some borrowers have taken advantage of the weak legal system and lack of fully-fledged credit bureaus to take multiple loans from various lending institutions, giving room for unscrupulous borrowers to default, leading to increasing NPLs. With little resources to track defaulters down, CBs have been the most suffering victims, which explain the negative relationship between efficiency and GDP in CBs in Tanzania.

While these studies have examined efficiency performance in TCBs and Microfinance Institutions (MFIs), there is no evidence with regard to studies in CBs inefficiency given that CBs have unique characteristics that distinguish them from TCBs and MFIs. This study attempted to fill this gap by analyzing drivers of inefficiency in CBs in Tanzania.

RESEARCH METHODOLOGY
Research design
The study applied explanatory sequential research design by examining relationship between variables through analyzing quantitative panel data, followed by validating results using qualitative information from key informants. This kind of mixed research design enhances the strength of research findings by exploiting the advantages of both approaches thus providing a more complete picture of the research phenomenon (Wachira, 2015). Further, the research design is appropriate for a cause-effect relationship study among variables over an extended period, and fits well for triangulation purposes (Kaleshu, 2013; Babbie, 2004). Panel data, which constituted the major source of research data in this study, have the merit of using both cross-section and time-series analyses and they give information on the time-ordering of events, controlling for individual unobserved heterogeneity (Brüderl, 2005). They give “more variability”, less collinearity among variables, more degree of freedom, and more efficiency (Hsiao and Hsiao, 2006; Hoffman et al., 2005). For a study of dynamic changes such as determinants of bank efficiency, the repeated cross-section of observations overtime suits in very well (Hsiao and Hsiao, 2006).
Scope, data sources, and sampling
The study covered the period from 2002 to 2016. The year 2002 was chosen as a starting period to capture the effects of the first and second financial (banking) reforms in the country. This was also the period when a significant number of CBs featured prominently in response to the financial reforms in Tanzania. Secondary quantitative data were the key source of information. These data were sourced from both Bank of Tanzania (BOT) and audited accounts of the respective CBs, thus indicating some evidence of data reliability given the reputable nature of those sources. The other source was primary data gathered from key informants at BOT and CBs using survey instruments. The purpose of using the primary source was to validate/triangulate some findings generated from panel data analysis. Since banks that have been in the industry for less than five years are considered inappropriate for gauging their general performance (Richard, 2010), the study applied purposeful sampling in selecting CBs for the study. Accordingly, only CBs that existed by 2010 were included in the sample. The final sample therefore consisted of an unbalanced panel of 9 CBs in the period 2002-2016. With 90% of CBs having been included in the sample, it was considered to be quite representative the findings from which could be generalized to all CBs in Tanzania.

Modelling the drivers of inefficiency in CBs
The factors that drive inefficiency in CBs were analyzed by running a tobit regression model as applied in Mataba (2016); Aikaeli (2006); and Pasiouras et al. (2007). This was done by regressing measured inefficiency indices against variables that were hypothesized to impact bank inefficiency measures. Tobit regression model was applied as it is appropriate for a dependent variable whose values are constrained in some way (Gujarat, 2004), which is characteristic of the dependent variables in this study. Since the possible measures of efficiency range between 0 percent and 100 percent (alternatively between 0 and 1), and since inefficiency level = 100 - efficiency level attained; correspondingly; all inefficiency measures in this study lie between 0 and 100 percent. This implies that, using the Ordinary Least Square (OLS) would give inconsistent results (Pasiouras et al., 2007; Tobin, 1958).

The model was specified with inefficiency indexes as functions of regressors hypothesized as drivers of inefficiency in CBs:

\[\text{InEff}_i = f(x_{1i}, x_{2i}, \ldots, x_{ki}) \]

………………………………………………………………………………………………………(12)

A complete tobit regression model used in this study took the form:

\[\text{InEff}_it = \beta_0 + \beta_1 \text{Gltd}_it + \beta_2 \text{RoA}_it + \beta_3 \text{Car}_it + \beta_4 \text{Logassts}_it + \beta_5 \text{Nim}_it + \beta_6 \text{cbf}_it + \beta_7 \log \text{gdp}_it + \beta_8 \text{Lrates}_it + \xi_{it} \]

………………………………………………………………………………………………………(13)
Where $InEff_i$ are dependent variables (inefficiency scores) calculated earlier by DEA and they represent Cost Inefficiency (CIE), Technical Inefficiency under CRS conditions (TeICRS), Technical Inefficiency under VRS conditions (TeIVRS), Scale Inefficiency (SIE) and Allocative Inefficiency (AIE). The exogenous/independent variables in the model were proxied as follows: bank size (logAssts) measured in terms of the logarithm of total bank assets; loans to total assets (LoanAssts) measured as ratio of loans to total assets; Net interest margin (Nim) calculated as interest income less interest expenses over average earning assets; non-financial long term assets held by bank (fixed assets) to total assets (Nflata); labour expenses to non interest capital and admin related expenses (Lcnicare); capital adequacy ratio (Car1) calculated as the ratio of bank core capital to risk-weighted assets plus off-balance sheet exposure; and a dummy variable (DumCoop) representing a cooperative banking factor with CCBs taking value 1 while NCCBs taking the value 0; and ε being a residual value. β_1 to β_6 represented the slope coefficients of exogenous variables and β_0 was a coefficient for the intercept. It should be noted that familiar residual based tests inferring heteroskedasticity, serial correlation and normality in standard regression models are not directly appropriate for latent variable regression models such as Tobit (Jeong and Jeong, 2010; Reynolds and Shonkwiller, 1991). A summary of a priori relationships between tobit regression variables (positive or negative) are shown in Table 1.

Table 1: Expected relationships between variables of interest under study

<table>
<thead>
<tr>
<th>Variables</th>
<th>Gltd</th>
<th>RoaA</th>
<th>Car1</th>
<th>logAssts</th>
<th>Nim</th>
<th>Cbf</th>
<th>logdp</th>
<th>Lrates</th>
<th>Supporting Literature</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIE</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(+)</td>
<td>(+)</td>
<td>(-)</td>
<td>(+)</td>
<td>Pančurová and Lyócsa (2013)Sanchez et al. (2013)</td>
</tr>
<tr>
<td>TeICRS</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(+)</td>
<td>(+)</td>
<td>(-)</td>
<td>(+)</td>
<td>Pasiouras et al. (2007)</td>
</tr>
<tr>
<td>TeIVRS</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(+)</td>
<td>(+)</td>
<td>(-)</td>
<td>(+)</td>
<td>Sanchez et al. (2013).</td>
</tr>
<tr>
<td>SIE</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(+)</td>
<td>(+)</td>
<td>(-)</td>
<td>(+)</td>
<td>Sanchez et al. (2013)</td>
</tr>
<tr>
<td>AIE</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(+)</td>
<td>(+)</td>
<td>(-)</td>
<td>(+)</td>
<td>Havrylchyk (2006)</td>
</tr>
</tbody>
</table>

Note: signs in bracket indicate expected relationship between corresponding variables

Source: Constructed from literature review

Empirical Results

Table 2 provides a summary of the Stata outputs regarding the relationships between independent bank specific and macroeconomic variables against the inefficiency measures serving as dependent variable one after the other. Gross loan to total deposit (Gltd) ratio, which is one of the pointers of liquidity in banks, was statistically significant and positively related to all measures of inefficiency. This implies that higher ratios of gross loans to deposit tended to reduce inefficiencies in banks. As deposits are converted into more loans, CBs experience lower inefficiencies. This is consistent with the notion that efficiency level increases as the same inputs are used to generate more outputs. As one unit of deposit generates more loans, inefficiencies are reduced as deposit resources are used optimally. However, higher ratios of Gltd tend to compromise with the liquidity status of
banks. As additional deposits are converted into more loans for efficiency gains, community banks tend to increase their liquidity risk as they remain with minimal liquidity to meet daily cash demand; a situation which may have devastating effects in case there is an unexpected increase in deposit demands. The problem is likely to be more serious especially in community banks because demand deposits are the main sources of liquidity. If the situation is not well checked it may culminate into bank runs. For instance, in 2014 the Gltd ratios in most CBs were adverse, reaching as higher as 129% against the best rating of 70% or below as per BOT’s CAMELS standards. This indicates that CBs were over-lending the clients’ deposits.

Table 2: Tobit regression results summary

<table>
<thead>
<tr>
<th>Variable</th>
<th>CIE</th>
<th>TelCRS</th>
<th>TelVRS</th>
<th>AIE</th>
<th>SIE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gltd</td>
<td>-0.0032776***</td>
<td>-0.0058071***</td>
<td>-0.0045476***</td>
<td>-0.002219**</td>
<td>-0.0017673**</td>
</tr>
<tr>
<td></td>
<td>(0.0009847)</td>
<td>(0.0007809)</td>
<td>(0.0009673)</td>
<td>(0.0009948)</td>
<td>(0.0006775)</td>
</tr>
<tr>
<td>RoaA</td>
<td>-0.0348183</td>
<td>-0.0670522***</td>
<td>-0.0670725***</td>
<td>-0.0021638</td>
<td>0.003071**</td>
</tr>
<tr>
<td></td>
<td>(0.0240326)</td>
<td>(0.0253425)</td>
<td>(0.0236066)</td>
<td>(0.0021099)</td>
<td>(0.0014425)</td>
</tr>
<tr>
<td>Carl</td>
<td>-0.0770179*</td>
<td>-0.130633***</td>
<td>-0.1712735***</td>
<td>0.572194</td>
<td>0.0098025</td>
</tr>
<tr>
<td></td>
<td>(0.044211)</td>
<td>(0.035121)</td>
<td>(0.0434272)</td>
<td>(0.0389525)</td>
<td>(0.0260678)</td>
</tr>
<tr>
<td>Logassts</td>
<td>-0.2600348***</td>
<td>-0.1419271***</td>
<td>-0.0548745</td>
<td>-0.3086669***</td>
<td>-0.1019495***</td>
</tr>
<tr>
<td></td>
<td>(0.0424271)</td>
<td>(0.0346997)</td>
<td>(0.0416749)</td>
<td>(0.0401826)</td>
<td>(0.0271177)</td>
</tr>
<tr>
<td>Nim</td>
<td>0.3858615**</td>
<td>0.4595106***</td>
<td>0.5084902***</td>
<td>0.0622828</td>
<td>-0.0372082</td>
</tr>
<tr>
<td></td>
<td>(0.1853398)</td>
<td>(0.1517846)</td>
<td>(0.1820539)</td>
<td>(0.1933203)</td>
<td>(0.1319685)</td>
</tr>
<tr>
<td>Cbf</td>
<td>0.0161398</td>
<td>0.0462083</td>
<td>0.0826498**</td>
<td>-0.0201833</td>
<td>-0.0392542</td>
</tr>
<tr>
<td></td>
<td>(0.0382936)</td>
<td>(0.03364)</td>
<td>(0.0376147)</td>
<td>(0.0401488)</td>
<td>(0.0274384)</td>
</tr>
<tr>
<td>Loggdsp</td>
<td>0.3449687***</td>
<td>0.0974666</td>
<td>0.1645411*</td>
<td>0.4755344***</td>
<td>-0.0949577</td>
</tr>
<tr>
<td></td>
<td>(0.095148)</td>
<td>(0.784271)</td>
<td>(0.0967682)</td>
<td>(0.0922685)</td>
<td>(0.0626854)</td>
</tr>
<tr>
<td>Lrattes</td>
<td>-0.052269*</td>
<td>-0.0158877</td>
<td>-0.0308518</td>
<td>-0.0390925</td>
<td>0.0244061</td>
</tr>
<tr>
<td></td>
<td>(0.0269922)</td>
<td>(0.0214051)</td>
<td>(0.0265137)</td>
<td>(0.0282986)</td>
<td>(0.0193542)</td>
</tr>
</tbody>
</table>

Source: Stata version 11.1 analysis

When CBs management were consulted to explain the situation, it was found that deposits mobilized from clients were not enough to match with the loan demands resulting into deposit over-lending. One commented:

“We are faced with tough dilemma. While we are restricted to lend not more than 80% of the deposits mobilized, the demand for loans is higher than this. Unfortunately, we don’t have loanable funds sources other than deposits. Borrowing from commercial banks is not feasible due to high interest charged by these banks” (Interview, May 5, 2016).
This further implies that lending opportunities are lost because of low levels of deposits mobilized. Although higher Gltd ratio is preferred from the efficiency point of view (due to the fact that higher ratios reduce inefficiencies in banks), it may not be safe for liquidity considerations.

The effect of bank profitability on bank inefficiencies was also explored using RoaA (Return on average Assets). While Cost Inefficiency (CIE) and Allocative Inefficiency (AIE) were not statistically significantly affected by RoaA, TeICRS, TeIVRS and SIE were negatively driven by RoaA, implying that, as profitability on the employment of assets increases, inefficiency in the use of internal resources decreases. Stated differently, as the inefficiency in the use of internal resources decreases, so are the positive effects on profitability. These findings have some wider implications. As it can be noted, CIE and AIE were not statistically significantly affected by RoaA. This implies that a larger proportion of cost inefficiency in CBs arises from sub-optimal allocation of resources resulting from uncontrollable allocative inefficiency factors, rather than technical inefficiencies (X-inefficiencies). These results are inconsistent with X-efficiency theory but consistent with empirical findings of Pasiouras et al. (2007). Cost spending to raise business and financial literacy capacity of the poor clients and excessive regulatory burden imposed to CBs were cited by key informants as major sources of cost inefficiency in community banks in Tanzania. Similarly, the effect of capital adequacy ratio (Car1) on TeICRS and TeIVRS was negative and statistically significant indicating the positive effect of increasing capitalization on reducing X-inefficiencies. These results are consistent with the theory that high stake ownership (arising from increased capitalization) tend to monitor management more effectively, resulting in reduced inefficiencies. The weak or insignificant effect of capital adequacy on CIE and AIE seems to suggest a limited influence of capitalization on inefficiencies caused by factors outside the control of management.

Except for Technical Efficiency under Variable Returns to Scale (TeIVRS), bank size (logassts) was significantly negatively related to all measures of inefficiencies implying that, as bank size increased in terms of asset size, inefficiencies decreased in banks. This probably explains the effects of size economies on bank performance. However, most community banks in Tanzania are small with limited loan portfolio and limited working facilities that render them inefficient. During discussions with some key informants in some community banks, it was revealed that most community banks cannot afford to buy better working facilities, which in turn affect their efficiency. One key informant revealed:

“Our core banking system is not efficient. The output generated bear many errors of which you have to spend much time to correct. We are spending a lot of money to service it, yet we cannot buy a better one as it is very expensive” (Interview, May 5, 2016)
Another interviewee said:

“Although we are trying to get the maximum loan portfolio out of the meager deposits we receive from our poor clients which of course bolster our efficiency, the returns we get are not sufficient to meet all the operational costs we incur, thus the efficiency benefits arising from loans are just offset by the increasing operational costs” (Interview, May 3, 2016)

From the quotes it can be inferred that, although the bank management have been trying hard to make use of the resources available, the costs associated with malfunctioning of the core banking systems and increasing operational costs seem to offset the benefits, hence inefficiencies.

On the other hand, Net interest margin (Nim), which is a proxy of the pricing policy in banks was significantly positively related to CIE, TeICRS and TeVRS, implying that as interest on loans increases without a corresponding increase on deposit, inefficiencies in banks tend to increase as well. The positive association corresponds with the view that larger interest margins signify insensitivity to competition which in turn results in increased inefficiency (Sanchez et al, 2013).

One interesting observation was that most of the CBs that set higher interest rates on loans were also the ones which paid minimal interest rates on deposits. When some key informants from the banks’ management were consulted to explain this disparity, cost recovery due to increasing social intermediation costs was cited as the major reason. One said: “It is very expensive to provide banking services to the poor; you need to train them first before you lend them money, otherwise you may lose it all” (Interview, May 7, 2016). To elaborate, the informants insisted that a significant number of their clients were financially illiterate and did not own official securities to be used as collaterals. It was therefore important to organize them into groups so that they could receive intensive training on financial literacy before accessing financial services. Apart from receiving the training, the groups so formed were used as loan guarantors and loan monitors against the borrowing member.

Although high interest margins were justified on grounds of cost recovery, they seemed to act against the efforts to mobilize deposits. There was no incentive for clients to deposit their money into banks that offered very minimal interest on deposits while charging high interest rates on loans. Therefore, bank managers have had the role to reconcile between recovering the cost against attracting deposits from clients.

The effect of the cooperative banking factor on bank inefficiency was examined through a dummy variable (cbf). Except for TeIVRS, the effect of the variable was statistically insignificant to all measures of inefficiencies. This indicates that bank uniqueness as manifested in banks categories did not matter when it comes to inefficiency. The application of uniform regulatory framework with no regard to bank category seems to explain the indifference.
The effects of macroeconomic factors on bank inefficiencies were explored through the GDP (logdgp) and market lending rates (lrates). While the effect of lrates was insignificant, GDP was statistically and significantly positively related Cost Inefficiency (CIE) and Allocative Inefficiency (AIE). The positive association of GDP with CIE and AIE is a bit surprising as one would expect a negative association due to the fact that a healthy economy consistent with increasing GDP should be associated with decreasing inefficiencies as GDP increase is an indication of optimal use of resources. However, although the Tanzanian economy has generally been growing, the major contributors have been mining and some service sectors including tourism, transportation, communication and construction. The contribution of agriculture to GDP, which forms a major lending market for the community banks, has been decreasing overtime (World Bank, 2015). More importantly, when the economy of a developing country is growing consistent with an increasing GDP, banks tend to increase their lending in order to finance an expanding ‘hot’ economy. In such a situation there is a tendency for banks to by-pass the duly diligence criterion for the sake of profit making (i.e. excessive risk-taking behaviour). However, small banks, more specifically CBs, tend to suffer heavily in terms of increasing NPLs as they lack resources to track down multiple borrowers who take advantage of the lending spree of banks, underdeveloped credit bureaus and weak legal structures inherent in developing countries (Mataba, 2016). Generally, this explains the positive relationship between GDP and CBs’ inefficiency.

CONCLUSION AND POLICY IMPLICATIONS

The study made use of the X-efficiency theory to analyze and discuss the drivers of inefficiencies in community banks in Tanzania. While X-inefficiency theory alleges that the major source of inefficiency in firms is low work pressure or X-inefficiencies, the findings indicate that sub-optimal allocation of resources was a major source of inefficiencies in community banks. The inconsistence with X-inefficiency theory in community banks seems to be linked with excessive regulatory burden imposed to the community banking sector. Development costs incurred to support financial literacy in the poor communities add up to inefficiencies.

As regard to the null hypothesis stated in section 1.0, which states that bank specific and macroeconomic factors do not impact inefficiencies in community banks, the hypothesis is rejected. The findings indicate that Gross loans to total deposit (Gltd), bank size (logassts), return on average assets (RoA) and capital adequacy ratio (Car1) were statistically significant and negatively related to most bank inefficiency measures implying that inefficiencies in community could be minimized by the increase in bank size, ratios of gross loan to total deposits, return on use of assets and capitalization. It was also found that, although higher ratios of Gltd increased efficiency gains, it could result into liquidity imbalances in the long run. Net interest margins (Nim) was statistically significant but with a positive relationship with inefficiency. The positive
relationship underscores the counterproductive nature of higher price margins which not only underlies inefficiency but also undermines deposit mobilization efforts in community banks.

Other inefficiency drivers including net interest margins (Nim) and GDP were statistically significant but with a positive relationship. The positive relationship between Nim and inefficiencies underscores the negative effect of higher price margins on efficiency and deposit mobilization efforts in community banks. The effect of macroeconomic factors on inefficiencies was not uniform; with the effect of market lending rates being negligible while GDP having an unexpected positive effect on inefficiencies implying a decreasing contribution of agriculture to GDP in Tanzania and consistent with the notion that small banks tend to suffer heavily in terms of increasing NPLs as they lack resources to track down multiple borrowers who take advantage of the lending spree of banks during periods of expanding economy.

In summary, one of the major implications of the findings is that, while inefficiency is driven by many factors as it has been revealed, the effect of expanding GDP on CBs’ inefficiency is paramount. Since CBs are small banks with little resources to track down defaulters, some borrowers tend to take advantage of the situation (high lending spree to finance an expanding economy, underdeveloped credit bureaus, and weak legal structure) by taking multiple loans leading to default.

These findings have policy implications. Bank regulators should encourage community banks to increase their asset base in order to curb inefficiency. This can be done through additional investment by existing shareholders or/and through issue of new shares. Regarding the effect of gross loans to total deposit, community banks management need to balance between reducing inefficiency and maintaining the optimal liquidity as higher Gltd may compromise optimal liquidity levels in banks. On the effect of Net interest margin, bank management need to revisit their pricing policies in order not only to reduce inefficiencies but also to attract deposits. With respect to the effect of GPD on inefficiency, CBs should exercise extra duly diligence when extending loans during situations of expanding GDP.

REFERENCES

BOT (2016). Balance Sheets and Statements of Income and Expenses comparative view

ISSN: 2408-7920
Copyright © African Journal of Applied Research
Arca Academic Publisher 128

Kaleshu, J.T. (2013). Determinants of linkage banking between Savings and Credit Cooperative Societies (SACCOS) and formal financial institutions in Tanzania, a dissertation for the award of PhD at University of Dar es Salaam: Tanzania. 350pp.

